Forest soil metagenome gene cluster involved in antifungal activity expression in Escherichia coli.

نویسندگان

  • Eu Jin Chung
  • He Kyoung Lim
  • Jin-Cheol Kim
  • Gyung Ja Choi
  • Eun Jin Park
  • Myung Hwan Lee
  • Young Ryun Chung
  • Seon-Woo Lee
چکیده

Using two forest soils, we previously constructed two fosmid libraries containing 113,700 members in total. The libraries were screened to select active antifungal clones using Saccharomyces cerevisiae as a target fungus. One clone from the Yuseong pine tree rhizosphere soil library, pEAF66, showed S. cerevisiae growth inhibition. Despite an intensive effort, active chemicals were not isolated. DNA sequence analysis and transposon mutagenesis of pEAF66 revealed 39 open reading frames (ORFs) and indicated that eight ORFs, probably in one transcriptional unit, might be directly involved in the expression of antifungal activity in Escherichia coli. The deduced amino acid sequences of eight ORFs were similar to those of the core genes encoding type II family polyketide synthases, such as the acyl carrier protein (ACP), ACP synthases, aminotransferase, and ACP reductase. The gene cluster involved in antifungal activity was similar in organization to the putative antibiotic production locus of Pseudomonas putida KT2440, although we could not select a similar active clone from the KT2440 genomic DNA library in E. coli. ORFs encoding ATP binding cassette transporters and membrane proteins were located at both ends of the antifungal gene cluster. Upstream ORFs encoding an IclR family response regulator and a LysR family response regulator were involved in the positive regulation of antifungal gene expression. Our results suggested the metagenomic approach as an alternative to search for novel antifungal antibiotics from unculturable soil bacteria. This is the first report of an antifungal gene cluster obtained from a soil metagenome using S. cerevisiae as a target fungus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antifungal activity of recombinant rice LTP2 on some phytopathogenic fungi

Plant lipid transfer proteins (LTPs) are members of the pathogenesis-related proteins (PR-14) and some of them exhibit activity against phytopathogenic fungi. To investigate whether rice LTP2 plays a role in antifungal activity, the coding region of an Iranian rice Ltp2 gene was cloned into expression vector pET24-d(+) and then expressed in Escherichia coli Rosetta strain (DE3). The potential a...

متن کامل

Cloning, Overexpression and in vitro Antifungal Activity of Zea Mays PR10 Protein

Background: Plants have various defense mechanisms such as production of antimicrobial peptides, particularly pathogenesis related proteins (PR proteins). PR10 family is an essential member of this group, with antifungal, antibacterial and antiviral activities.Objective: The goal of this study is to assess the antifungal activity of maize PR10 against some of fungal phytopathogens.M...

متن کامل

Production and characterization of a novel antifungal chitinase identified by functional screening of a suppressive-soil metagenome

BACKGROUND Through functional screening of a fosmid library, generated from a phytopathogen-suppressive soil metagenome, the novel antifungal chitinase-named Chi18H8 and belonging to family 18 glycosyl hydrolases-was previously discovered. The initial extremely low yield of Chi18H8 recombinant production and purification from Escherichia coli cells (21 μg/g cell) limited its characterization, t...

متن کامل

Inactivation of chloramphenicol and florfenicol by a novel chloramphenicol hydrolase.

Chloramphenicol and florfenicol are broad-spectrum antibiotics. Although the bacterial resistance mechanisms to these antibiotics have been well documented, hydrolysis of these antibiotics has not been reported in detail. This study reports the hydrolysis of these two antibiotics by a specific hydrolase that is encoded by a gene identified from a soil metagenome. Hydrolysis of chloramphenicol h...

متن کامل

Characterization of a forest soil metagenome clone that confers indirubin and indigo production on Escherichia coli.

A microbial community analysis of forest soil from Jindong Valley, Korea, revealed that the most abundant rRNA genes were related to Acidobacteria, a major taxon with few cultured representatives. To access the microbial genetic resources of this forest soil, metagenomic libraries were constructed in fosmids, with an average DNA insert size of more than 35 kb. We constructed 80,500 clones from ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 74 3  شماره 

صفحات  -

تاریخ انتشار 2008